Skip to main content Skip to footer
HomeHome
 
  • Homepage
  • Searching for patents

    Patent knowledge

    Access our patent databases and search tools.

    Go to overview 

    • Overview
    • Technical information
      • Overview
      • Espacenet - patent search
      • European Publication Server
      • EP full-text search
    • Legal information
      • Overview
      • European Patent Register
      • European Patent Bulletin
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Overview
      • PATSTAT
      • IPscore
      • Technology insight reports
    • Data
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
      • Web services
      • Coverage, codes and statistics
    • Technology platforms
      • Overview
      • Plastics in transition
      • Water innovation
      • Space innovation
      • Technologies combatting cancer
      • Firefighting technologies
      • Clean energy technologies
      • Fighting coronavirus
    • Helpful resources
      • Overview
      • First time here?
      • Asian patent information
      • Patent information centres
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
    Image
    Plastics in Transition

    Technology insight report on plastic waste management

  • Applying for a patent

    Applying for a patent

    Practical information on filing and grant procedures.

    Go to overview 

    • Overview
    • European route
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
      • Appeals
      • Unitary Patent & Unified Patent Court
      • National validation
      • Request for extension/validation
    • International route (PCT)
      • Overview
      • Euro-PCT Guide – PCT procedure at the EPO
      • EPO decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
      • Training and events
    • National route
    • Find a professional representative
    • MyEPO services
      • Overview
      • Understand our services
      • Get access
      • File with us
      • Interact with us on your files
      • Online Filing & fee payment outages
    • Forms
      • Overview
      • Request for examination
    • Fees
      • Overview
      • European fees (EPC)
      • International fees (PCT)
      • Unitary Patent fees (UP)
      • Fee payment and refunds
      • Warning

    UP

    Find out how the Unitary Patent can enhance your IP strategy

  • Law & practice

    Law & practice

    European patent law, the Official Journal and other legal texts.

    Go to overview 

    • Overview
    • Legal texts
      • Overview
      • European Patent Convention
      • Official Journal
      • Guidelines
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
      • Unitary patent system
      • National measures relating to the Unitary Patent
    • Court practices
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
    Image
    Law and practice scales 720x237

    Keep up with key aspects of selected BoA decisions with our monthly "Abstracts of decisions”

  • News & events

    News & events

    Our latest news, podcasts and events, including the European Inventor Award.

    Go to overview 

     

    • Overview
    • News
    • Events
    • European Inventor Award
      • Overview
      • The meaning of tomorrow
      • About the award
      • Categories and prizes
      • Meet the finalists
      • Nominations
      • European Inventor Network
      • The 2024 event
    • Young Inventor Prize
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
    • Press centre
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • Innovation and patenting in focus
      • Overview
      • Water-related technologies
      • CodeFest
      • Green tech in focus
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
      • The future of medicine
      • Materials science
      • Mobile communications
      • Biotechnology
      • Patent classification
      • Digital technologies
      • The future of manufacturing
      • Books by EPO experts
    • "Talk innovation" podcast

    Podcast

    From ideas to inventions: tune into our podcast for the latest in tech and IP

  • Learning

    Learning

    The European Patent Academy – the point of access to your learning

    Go to overview 

    • Overview
    • Learning activities and paths
      • Overview
      • Learning activities
      • Learning paths
    • EQE and EPAC
      • Overview
      • EQE - European qualifying examination
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Overview
      • Business and IP managers
      • EQE and EPAC Candidates
      • Judges, lawyers and prosecutors
      • National offices and IP authorities
      • Patent attorneys and paralegals
      • Universities, research centres and technology transfer centres (TTOs)
    Image
    Patent Academy catalogue

    Have a look at the extensive range of learning opportunities in the European Patent Academy training catalogue

  • About us

    About us

    Find out more about our work, values, history and vision

    Go to overview 

    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Overview
      • Official celebrations
      • Member states’ video statements
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Overview
      • Legal foundations
      • Member states of the European Patent Organisation
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Overview
      • Communiqués
      • Calendar
      • Documents and publications
      • Administrative Council
    • Principles & strategy
      • Overview
      • Our mission, vision, values and corporate policy
      • Strategic Plan 2028
      • Towards a New Normal
    • Leadership & management
      • Overview
      • President António Campinos
      • Management Advisory Committee
    • Sustainability at the EPO
      • Overview
      • Environmental
      • Social
      • Governance and Financial sustainability
    • Services & activities
      • Overview
      • Our services & structure
      • Quality
      • Consulting our users
      • European and international co-operation
      • European Patent Academy
      • Chief Economist
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Overview
      • About the Observatory
      • Our activities
      • Our topics
      • Our partners and networks
      • Financing innovation programme
      • Digital library
      • Data desk
    • Procurement
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Sustainable Procurement Policy
      • About eTendering and electronic signatures
      • Procurement portal
      • Invoicing
      • General conditions
      • Archived tenders
    • Transparency portal
      • Overview
      • General
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
      • "Long Night"
    Image
    Patent Index 2024 keyvisual showing brightly lit up data chip, tinted in purple, bright blue

    Track the latest tech trends with our Patent Index

 
en de fr
  • Language selection
  • English
  • Deutsch
  • Français
Main navigation
  • Homepage
  • New to patents
    • Go back
    • Overview
    • What's your big idea?
    • Are you ready?
    • What to expect
    • How to apply for a patent
    • Your business and patents
    • Is it patentable?
    • Are you first?
    • Why do we have patents?
    • Patent quiz
    • Unitary patent video
  • Searching for patents
    • Go back
    • Overview
    • Technical information
      • Go back
      • Overview
      • Espacenet - patent search
        • Go back
        • Overview
        • National patent office databases
        • Global Patent Index (GPI)
        • Release notes
      • European Publication Server
        • Go back
        • Overview
        • Release notes
        • Cross-reference index for Euro-PCT applications
        • EP authority file
        • Help
      • EP full-text search
    • Legal information
      • Go back
      • Overview
      • European Patent Register
        • Go back
        • Overview
        • Release notes archive
        • Register documentation
          • Go back
          • Overview
          • Deep link data coverage
          • Federated Register
          • Register events
      • European Patent Bulletin
        • Go back
        • Overview
        • Download Bulletin
        • EP Bulletin search
        • Help
      • European Case Law Identifier sitemap
      • Third-party observations
    • Business information
      • Go back
      • Overview
      • PATSTAT
      • IPscore
        • Go back
        • Release notes
      • Technology insight reports
    • Data
      • Go back
      • Overview
      • Technology Intelligence Platform
      • Linked open EP data
      • Bulk data sets
        • Go back
        • Overview
        • Manuals
        • Sequence listings
        • National full-text data
        • European Patent Register data
        • EPO worldwide bibliographic data (DOCDB)
        • EP full-text data
        • EPO worldwide legal event data (INPADOC)
        • EP bibliographic data (EBD)
        • Boards of Appeal decisions
      • Web services
        • Go back
        • Overview
        • Open Patent Services (OPS)
        • European Publication Server web service
      • Coverage, codes and statistics
        • Go back
        • Weekly updates
        • Updated regularly
    • Technology platforms
      • Go back
      • Overview
      • Plastics in transition
        • Go back
        • Overview
        • Plastics waste recovery
        • Plastics waste recycling
        • Alternative plastics
      • Innovation in water technologies
        • Go back
        • Overview
        • Clean water
        • Protection from water
      • Space innovation
        • Go back
        • Overview
        • Cosmonautics
        • Space observation
      • Technologies combatting cancer
        • Go back
        • Overview
        • Prevention and early detection
        • Diagnostics
        • Therapies
        • Wellbeing and aftercare
      • Firefighting technologies
        • Go back
        • Overview
        • Detection and prevention of fires
        • Fire extinguishing
        • Protective equipment
        • Post-fire restoration
      • Clean energy technologies
        • Go back
        • Overview
        • Renewable energy
        • Carbon-intensive industries
        • Energy storage and other enabling technologies
      • Fighting coronavirus
        • Go back
        • Overview
        • Vaccines and therapeutics
          • Go back
          • Overview
          • Vaccines
          • Overview of candidate therapies for COVID-19
          • Candidate antiviral and symptomatic therapeutics
          • Nucleic acids and antibodies to fight coronavirus
        • Diagnostics and analytics
          • Go back
          • Overview
          • Protein and nucleic acid assays
          • Analytical protocols
        • Informatics
          • Go back
          • Overview
          • Bioinformatics
          • Healthcare informatics
        • Technologies for the new normal
          • Go back
          • Overview
          • Devices, materials and equipment
          • Procedures, actions and activities
          • Digital technologies
        • Inventors against coronavirus
    • Helpful resources
      • Go back
      • Overview
      • First time here?
        • Go back
        • Overview
        • Basic definitions
        • Patent classification
          • Go back
          • Overview
          • Cooperative Patent Classification (CPC)
        • Patent families
          • Go back
          • Overview
          • DOCDB simple patent family
          • INPADOC extended patent family
        • Legal event data
          • Go back
          • Overview
          • INPADOC classification scheme
      • Asian patent information
        • Go back
        • Overview
        • China (CN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Chinese Taipei (TW)
          • Go back
          • Overview
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • India (IN)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
        • Japan (JP)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Korea (KR)
          • Go back
          • Overview
          • Facts and figures
          • Grant procedure
          • Numbering system
          • Useful terms
          • Searching in databases
        • Russian Federation (RU)
          • Go back
          • Overview
          • Facts and figures
          • Numbering system
          • Searching in databases
        • Useful links
      • Patent information centres (PATLIB)
      • Patent Translate
      • Patent Knowledge News
      • Business and statistics
      • Unitary Patent information in patent knowledge
  • Applying for a patent
    • Go back
    • Overview
    • European route
      • Go back
      • Overview
      • European Patent Guide
      • Oppositions
      • Oral proceedings
        • Go back
        • Oral proceedings calendar
          • Go back
          • Calendar
          • Public access to appeal proceedings
          • Public access to opposition proceedings
          • Technical guidelines
      • Appeals
      • Unitary Patent & Unified Patent Court
        • Go back
        • Overview
        • Unitary Patent
          • Go back
          • Overview
          • Legal framework
          • Main features
          • Applying for a Unitary Patent
          • Cost of a Unitary Patent
          • Translation and compensation
          • Start date
          • Introductory brochures
        • Unified Patent Court
      • National validation
      • Extension/validation request
    • International route
      • Go back
      • Overview
      • Euro-PCT Guide
      • Entry into the European phase
      • Decisions and notices
      • PCT provisions and resources
      • Extension/validation request
      • Reinforced partnership programme
      • Accelerating your PCT application
      • Patent Prosecution Highway (PPH)
        • Go back
        • Patent Prosecution Highway (PPH) programme outline
      • Training and events
    • National route
    • MyEPO services
      • Go back
      • Overview
      • Understand our services
        • Go back
        • Overview
        • Exchange data with us using an API
          • Go back
          • Release notes
      • Get access
        • Go back
        • Overview
        • Release notes
      • File with us
        • Go back
        • Overview
        • What if our online filing services are down?
        • Release notes
      • Interact with us on your files
        • Go back
        • Release notes
      • Online Filing & fee payment outages
    • Fees
      • Go back
      • Overview
      • European fees (EPC)
        • Go back
        • Overview
        • Decisions and notices
      • International fees (PCT)
        • Go back
        • Reduction in fees
        • Fees for international applications
        • Decisions and notices
        • Overview
      • Unitary Patent fees (UP)
        • Go back
        • Overview
        • Decisions and notices
      • Fee payment and refunds
        • Go back
        • Overview
        • Payment methods
        • Getting started
        • FAQs and other documentation
        • Technical information for batch payments
        • Decisions and notices
        • Release notes
      • Warning
    • Forms
      • Go back
      • Overview
      • Request for examination
    • Find a professional representative
  • Law & practice
    • Go back
    • Overview
    • Legal texts
      • Go back
      • Overview
      • European Patent Convention
        • Go back
        • Overview
        • Archive
          • Go back
          • Overview
          • Documentation on the EPC revision 2000
            • Go back
            • Overview
            • Diplomatic Conference for the revision of the EPC
            • Travaux préparatoires
            • New text
            • Transitional provisions
            • Implementing regulations to the EPC 2000
            • Rules relating to Fees
            • Ratifications and accessions
          • Travaux Préparatoires EPC 1973
      • Official Journal
      • Guidelines
        • Go back
        • Overview
        • EPC Guidelines
        • PCT-EPO Guidelines
        • Unitary Patent Guidelines
        • Guidelines revision cycle
        • Consultation results
        • Summary of user responses
        • Archive
      • Extension / validation system
      • London Agreement
      • National law relating to the EPC
        • Go back
        • Overview
        • Archive
      • Unitary Patent system
        • Go back
        • Travaux préparatoires to UP and UPC
      • National measures relating to the Unitary Patent 
    • Court practices
      • Go back
      • Overview
      • European Patent Judges' Symposium
    • User consultations
      • Go back
      • Overview
      • Ongoing consultations
      • Completed consultations
    • Substantive patent law harmonisation
      • Go back
      • Overview
      • The Tegernsee process
      • Group B+
    • Convergence of practice
    • Options for professional representatives
  • News & events
    • Go back
    • Overview
    • News
    • Events
    • European Inventor Award
      • Go back
      • Overview
      • The meaning of tomorrow
      • About the award
      • Categories and prizes
      • Meet the inventors
      • Nominations
      • European Inventor Network
        • Go back
        • 2024 activities
        • 2025 activities
        • Rules and criteria
        • FAQ
      • The 2024 event
    • Young Inventors Prize
      • Go back
      • Overview
      • About the prize
      • Nominations
      • The jury
      • The world, reimagined
      • The 2025 event
    • Press centre
      • Go back
      • Overview
      • Patent Index and statistics
      • Search in press centre
      • Background information
        • Go back
        • Overview
        • European Patent Office
        • Q&A on patents related to coronavirus
        • Q&A on plant patents
      • Copyright
      • Press contacts
      • Call back form
      • Email alert service
    • In focus
      • Go back
      • Overview
      • Water-related technologies
      • CodeFest
        • Go back
        • CodeFest Spring 2025 on classifying patent data for sustainable development
        • Overview
        • CodeFest 2024 on generative AI
        • CodeFest 2023 on Green Plastics
      • Green tech in focus
        • Go back
        • Overview
        • About green tech
        • Renewable energies
        • Energy transition technologies
        • Building a greener future
      • Research institutes
      • Women inventors
      • Lifestyle
      • Space and satellites
        • Go back
        • Overview
        • Patents and space technologies
      • Healthcare
        • Go back
        • Overview
        • Medical technologies and cancer
        • Personalised medicine
      • Materials science
        • Go back
        • Overview
        • Nanotechnology
      • Mobile communications
      • Biotechnology
        • Go back
        • Overview
        • Red, white or green
        • The role of the EPO
        • What is patentable?
        • Biotech inventors
      • Classification
        • Go back
        • Overview
        • Nanotechnology
        • Climate change mitigation technologies
          • Go back
          • Overview
          • External partners
          • Updates on Y02 and Y04S
      • Digital technologies
        • Go back
        • Overview
        • About ICT
        • Hardware and software
        • Patents and standards
        • Artificial intelligence
        • Fourth Industrial Revolution
      • Additive manufacturing
        • Go back
        • Overview
        • About AM
        • AM innovation
      • Books by EPO experts
    • Podcast
  • Learning
    • Go back
    • Overview
    • Learning activities and paths
      • Go back
      • Overview
      • Learning activities: types and formats
      • Learning paths
    • EQE and EPAC
      • Go back
      • Overview
      • EQE - European Qualifying Examination
        • Go back
        • Overview
        • Compendium
          • Go back
          • Overview
          • Paper F
          • Paper A
          • Paper B
          • Paper C
          • Paper D
          • Pre-examination
        • Candidates successful in the European qualifying examination
        • Archive
      • EPAC - European patent administration certification
      • CSP – Candidate Support Programme
    • Learning resources by area of interest
      • Go back
      • Overview
      • Patent granting
      • Technology transfer and dissemination
      • Patent enforcement and litigation
    • Learning resources by profile
      • Go back
      • Overview
      • Business and IP managers
        • Go back
        • Overview
        • Innovation case studies
          • Go back
          • Overview
          • SME case studies
          • Technology transfer case studies
          • High-growth technology case studies
        • Inventor's handbook
          • Go back
          • Overview
          • Introduction
          • Disclosure and confidentiality
          • Novelty and prior art
          • Competition and market potential
          • Assessing the risk ahead
          • Proving the invention
          • Protecting your idea
          • Building a team and seeking funding
          • Business planning
          • Finding and approaching companies
          • Dealing with companies
        • Best of search matters
          • Go back
          • Overview
          • Tools and databases
          • EPO procedures and initiatives
          • Search strategies
          • Challenges and specific topics
        • Support for high-growth technology businesses
          • Go back
          • Overview
          • Business decision-makers
          • IP professionals
          • Stakeholders of the Innovation Ecosystem
      • EQE and EPAC Candidates
        • Go back
        • Overview
        • Paper F brain-teasers
        • Daily D questions
        • European qualifying examination - Guide for preparation
        • EPAC
      • Judges, lawyers and prosecutors
        • Go back
        • Overview
        • Compulsory licensing in Europe
        • The jurisdiction of European courts in patent disputes
      • National offices and IP authorities
        • Go back
        • Overview
        • Learning material for examiners of national officers
        • Learning material for formalities officers and paralegals
      • Patent attorneys and paralegals
      • Universities, research centres and TTOs
        • Go back
        • Overview
        • Modular IP Education Framework (MIPEF)
        • Pan-European Seal Young Professionals Programme
          • Go back
          • Overview
          • For students
          • For universities
            • Go back
            • Overview
            • IP education resources
            • University memberships
          • Our young professionals
          • Professional development plan
        • Academic Research Programme
          • Go back
          • Overview
          • Completed research projects
          • Current research projects
        • IP Teaching Kit
          • Go back
          • Overview
          • Download modules
        • Intellectual property course design manual
        • PATLIB Knowledge Transfer to Africa
          • Go back
          • The PATLIB Knowledge Transfer to Africa initiative (KT2A)
          • KT2A core activities
          • Success story: Malawi University of Science and Technology and PATLIB Birmingham
  • About us
    • Go back
    • Overview
    • The EPO at a glance
    • 50 years of the EPC
      • Go back
      • Official celebrations
      • Overview
      • Member states’ video statements
        • Go back
        • Albania
        • Austria
        • Belgium
        • Bulgaria
        • Croatia
        • Cyprus
        • Czech Republic
        • Denmark
        • Estonia
        • Finland
        • France
        • Germany
        • Greece
        • Hungary
        • Iceland
        • Ireland
        • Italy
        • Latvia
        • Liechtenstein
        • Lithuania
        • Luxembourg
        • Malta
        • Monaco
        • Montenegro
        • Netherlands
        • North Macedonia
        • Norway
        • Poland
        • Portugal
        • Romania
        • San Marino
        • Serbia
        • Slovakia
        • Slovenia
        • Spain
        • Sweden
        • Switzerland
        • Türkiye
        • United Kingdom
      • 50 Leading Tech Voices
      • Athens Marathon
      • Kids’ collaborative art competition
    • Legal foundations and member states
      • Go back
      • Overview
      • Legal foundations
      • Member states
        • Go back
        • Overview
        • Member states by date of accession
      • Extension states
      • Validation states
    • Administrative Council and subsidiary bodies
      • Go back
      • Overview
      • Communiqués
        • Go back
        • 2024
        • Overview
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
      • Calendar
      • Documents and publications
        • Go back
        • Overview
        • Select Committee documents
      • Administrative Council
        • Go back
        • Overview
        • Composition
        • Representatives
        • Rules of Procedure
        • Board of Auditors
        • Secretariat
        • Council bodies
    • Principles & strategy
      • Go back
      • Overview
      • Mission, vision, values & corporate policy
      • Strategic Plan 2028
        • Go back
        • Driver 1: People
        • Driver 2: Technologies
        • Driver 3: High-quality, timely products and services
        • Driver 4: Partnerships
        • Driver 5: Financial sustainability
      • Towards a New Normal
      • Data protection & privacy notice
    • Leadership & management
      • Go back
      • Overview
      • About the President
      • Management Advisory Committee
    • Sustainability at the EPO
      • Go back
      • Overview
      • Environmental
        • Go back
        • Overview
        • Inspiring environmental inventions
      • Social
        • Go back
        • Overview
        • Inspiring social inventions
      • Governance and Financial sustainability
    • Procurement
      • Go back
      • Overview
      • Procurement forecast
      • Doing business with the EPO
      • Procurement procedures
      • Dynamic Purchasing System (DPS) publications
      • Sustainable Procurement Policy
      • About eTendering
      • Invoicing
      • Procurement portal
        • Go back
        • Overview
        • e-Signing contracts
      • General conditions
      • Archived tenders
    • Services & activities
      • Go back
      • Overview
      • Our services & structure
      • Quality
        • Go back
        • Overview
        • Foundations
          • Go back
          • Overview
          • European Patent Convention
          • Guidelines for examination
          • Our staff
        • Enabling quality
          • Go back
          • Overview
          • Prior art
          • Classification
          • Tools
          • Processes
        • Products & services
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
          • Continuous improvement
        • Quality through networking
          • Go back
          • Overview
          • User engagement
          • Co-operation
          • User satisfaction survey
          • Stakeholder Quality Assurance Panels
        • Patent Quality Charter
        • Quality Action Plan
        • Quality dashboard
        • Statistics
          • Go back
          • Overview
          • Search
          • Examination
          • Opposition
        • Integrated management at the EPO
      • Consulting our users
        • Go back
        • Overview
        • Standing Advisory Committee before the EPO (SACEPO)
          • Go back
          • Overview
          • Objectives
          • SACEPO and its working parties
          • Meetings
          • Single Access Portal – SACEPO Area
        • Surveys
          • Go back
          • Overview
          • Detailed methodology
          • Search services
          • Examination services, final actions and publication
          • Opposition services
          • Formalities services
          • Customer services
          • Filing services
          • Key Account Management (KAM)
          • Website
          • Archive
      • Our user service charter
      • European and international co-operation
        • Go back
        • Overview
        • Co-operation with member states
          • Go back
          • Overview
        • Bilateral co-operation with non-member states
          • Go back
          • Overview
          • Validation system
          • Reinforced Partnership programme
        • Multilateral international co-operation with IP offices and organisations
        • Co-operation with international organisations outside the IP system
      • European Patent Academy
        • Go back
        • Overview
        • Partners
      • Chief Economist
        • Go back
        • Overview
        • Economic studies
      • Ombuds Office
      • Reporting wrongdoing
    • Observatory on Patents and Technology
      • Go back
      • Overview
      • About the Observatory
      • Our activities
      • Our topics
      • Our partners and networks
      • Financing innovation programme
        • Go back
        • Overview
        • Our studies on the financing of innovation
        • EPO initiatives for patent applicants
        • Financial support for innovators in Europe
      • Digital library
      • Data desk
        • Go back
        • Overview
    • Transparency portal
      • Go back
      • Overview
      • General
        • Go back
        • Overview
        • Annual Review 2023
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • 50 years of the EPC
          • Strategic key performance indicators
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
        • Annual Review 2022
          • Go back
          • Overview
          • Foreword
          • Executive summary
          • Goal 1: Engaged and empowered
          • Goal 2: Digital transformation
          • Goal 3: Master quality
          • Goal 4: Partner for positive impact
          • Goal 5: Secure sustainability
      • Human
      • Environmental
      • Organisational
      • Social and relational
      • Economic
      • Governance
    • Statistics and trends
      • Go back
      • Overview
      • Statistics & Trends Centre
      • Patent Index 2024
        • Go back
        • Insight into computer technology and AI
        • Insight into clean energy technologies
        • Statistics and indicators
          • Go back
          • European patent applications
            • Go back
            • Key trend
            • Origin
            • Top 10 technical fields
              • Go back
              • Computer technology
              • Electrical machinery, apparatus, energy
              • Digital communication
              • Medical technology
              • Transport
              • Measurement
              • Biotechnology
              • Pharmaceuticals
              • Other special machines
              • Organic fine chemistry
            • All technical fields
          • Applicants
            • Go back
            • Top 50
            • Categories
            • Women inventors
          • Granted patents
            • Go back
            • Key trend
            • Origin
            • Designations
      • Data to download
      • EPO Data Hub
      • Clarification on data sources
    • History
      • Go back
      • Overview
      • 1970s
      • 1980s
      • 1990s
      • 2000s
      • 2010s
      • 2020s
    • Art collection
      • Go back
      • Overview
      • The collection
      • Let's talk about art
      • Artists
      • Media library
      • What's on
      • Publications
      • Contact
      • Culture Space A&T 5-10
        • Go back
        • Catalyst lab & Deep vision
          • Go back
          • Irene Sauter (DE)
          • AVPD (DK)
          • Jan Robert Leegte (NL)
          • Jānis Dzirnieks (LV) #1
          • Jānis Dzirnieks (LV) #2
          • Péter Szalay (HU)
          • Thomas Feuerstein (AT)
          • Tom Burr (US)
          • Wolfgang Tillmans (DE)
          • TerraPort
          • Unfinished Sculpture - Captives #1
          • Deep vision – immersive exhibition
          • Previous exhibitions
        • The European Patent Journey
        • Sustaining life. Art in the climate emergency
        • Next generation statements
        • Open storage
        • Cosmic bar
      • "Long Night"
  • Boards of Appeal
    • Go back
    • Overview
    • Decisions of the Boards of Appeal
      • Go back
      • Overview
      • Recent decisions
      • Selected decisions
    • Information from the Boards of Appeal
    • Procedure
    • Oral proceedings
    • About the Boards of Appeal
      • Go back
      • Overview
      • President of the Boards of Appeal
      • Enlarged Board of Appeal
        • Go back
        • Overview
        • Pending referrals (Art. 112 EPC)
        • Decisions sorted by number (Art. 112 EPC)
        • Pending petitions for review (Art. 112a EPC)
        • Decisions on petitions for review (Art. 112a EPC)
      • Technical Boards of Appeal
      • Legal Board of Appeal
      • Disciplinary Board of Appeal
      • Presidium
        • Go back
        • Overview
    • Code of Conduct
    • Business distribution scheme
      • Go back
      • Overview
      • Technical boards of appeal by IPC in 2025
      • Archive
    • Annual list of cases
    • Communications
    • Annual reports
      • Go back
      • Overview
    • Publications
      • Go back
      • Abstracts of decisions
    • Case Law of the Boards of Appeal
      • Go back
      • Overview
      • Archive
  • Service & support
    • Go back
    • Overview
    • Website updates
    • Availability of online services
      • Go back
      • Overview
    • FAQ
      • Go back
      • Overview
    • Publications
    • Ordering
      • Go back
      • Overview
      • Patent Knowledge Products and Services
      • Terms and conditions
        • Go back
        • Overview
        • Patent information products
        • Bulk data sets
        • Open Patent Services (OPS)
        • Fair use charter
    • Procedural communications
    • Useful links
      • Go back
      • Overview
      • Patent offices of member states
      • Other patent offices
      • Directories of patent attorneys
      • Patent databases, registers and gazettes
      • Disclaimer
    • Contact us
      • Go back
      • Overview
      • Filing options
      • Locations
    • Subscription centre
      • Go back
      • Overview
      • Subscribe
      • Change preferences
      • Unsubscribe
    • Official holidays
    • Glossary
    • RSS feeds
Board of Appeals
Decisions

Recent decisions

Overview
  • 2025 decisions
  • 2024 decisions
  • 2023 decisions
  1. Home
  2. T 0663/08 (Antireflection coating/BLOESCH RESSOURCEN AG) 24-05-2011
Facebook X Linkedin Email

T 0663/08 (Antireflection coating/BLOESCH RESSOURCEN AG) 24-05-2011

European Case Law Identifier
ECLI:EP:BA:2011:T066308.20110524
Date of decision
24 May 2011
Case number
T 0663/08
Petition for review of
-
Application number
01919046.1
IPC class
C03C 17/34
Language of proceedings
EN
Distribution
DISTRIBUTED TO BOARD CHAIRMEN (C)

Download and more information:

Decision in EN 42.41 KB
Documentation of the appeal procedure can be found in the European Patent Register
Bibliographic information is available in:
EN
Versions
Unpublished
Application title

Method for applying an antireflection coating to inorganic optically transparent substrates

Applicant name
Blösch Ressourcen AG
Opponent name
Satisloh AG
Board
3.3.05
Headnote
-
Relevant legal provisions
European Patent Convention Art 83
European Patent Convention Art 100(b)
European Patent Convention Art 114(1)
European Patent Convention R 55(c) 1973
Keywords
Insufficiency of disclosure (yes) - gaps in information cannot be filled by general common knowledge - undue burden - research programme
Catchword
-
Cited decisions
G 0010/91
T 0409/91
T 0435/91
Citing decisions
-

I. European patent EP-B-1 274 660 was granted with 12 claims. The independent claims as granted read: "1. A method for applying an antireflection coating to a substrate of sapphire glass, which is an optically transparent, inorganic material, wherein alternating layers of different refractive indices are applied to the substrate by means of a plasma-enhanced PVD process, more particularly by so-called sputtering, the distance between the target and the substrate being chosen such that the scratching resistance of the obtained layers is similar to or higher than that of the substrate so that the light dispersion of the applied antireflection coating, measured by the "tightened Bayer test" defined in the description, is no more than twice as high as that of the uncoated sapphire glass." "9. A watch glass of sapphire glass, wherein at least a part of the surface, preferably a magnifying lens, or the entire surface is provided with an antireflection coating produced according to the method of claim 1." "12. A watch provided with the watch glass of claim 11."

II. This appeal is from the decision of the opposition division posted on 13 February 2008 revoking the European patent in question.

III. The documents cited during the opposition proceedings included the following:

A5: C.J. Mogab and E. Lugujjo, "Backscattering analysis of the composition of silicon-nitride films deposited by rf reactive sputtering", J. Applied Phys., Vol. 47, No. 4, (1976), pages 1302 to 1309

A6: Y. Hirohito et al., "Properties of silicon nitride films prepared by magnetron sputtering", Thin Solid Films 253 (1994), pages 425 to 429

A7: Joo Han Kim and Ki Woong Chung, "Microstructure and properties of silicon nitride thin films deposited by reactive bias magnetron sputtering", J. Applied Phys., Vol. 83, No. 11, (1998), pages 5831 to 5839

A8: JP-A-57 088 043 & English translation thereof

A9: Opponent's Test Report No. 1 ("Versuchsbericht"), undated

A10: ASTM Standard F 735-94

IV. The opposition division observed in the contested decision that the opposed patent disclosed neither the type of coating apparatus to be used, nor whether pulsed dc or rf sputtering was applied. Nor did the patent disclose any details concerning the flow rates of the reactant gases and the sputtering rate. The patent's lack of information regarding the operating conditions placed an undue burden on the skilled person attempting to repeat the claimed process and to obtain the desired peel- and scratch-resistant hard coatings. The patent was revoked because it did not disclose the invention in a manner sufficiently clear and complete for it to be carried out by a person skilled in the art (Article 83 EPC).

V. With its letter stating the grounds of appeal the appellant submitted new sets of claims as auxiliary requests 1 to 3, and inter alia the following document: Annex 1: Letter from Rolex SA

VI. The independent method claim 1 of auxiliary request 1 differs from granted claim 1 (main request) in that the passage: "the substrate is disposed in the plasma area (2) and" is inserted between the words "chosen such that" and "the scratching resistance". The wording of claim 1 in accordance with auxiliary request 2 differs from the wording of claim 1 as granted in that the passage "wherein the ratio of the distance dST between said substrate and the target and of the target diameter q is equal to 1 at the most if said substrate is positioned approximately opposite the center of the target, said diameter being determined in non—circular targets by the largest circle fitting on the target surface under said substrate, and if said substrate is positioned otherwise, said distance is chosen such that the plasma density at the location of the said substrate is the same as or greater than in the case of said central positioning" is added at the end of the claim. The wording of claim 1 in accordance with auxiliary request 3 differs from the wording of claim 1 as granted in that the passage "wherein the ratio of the distance dST between said substrate and the target and of the target diameter q is not greater than 1/2 (one half), preferably no greater than 1/3 (one third) if said substrate is positioned approximately opposite the center of the target, said diameter being determined in non—circular targets by the largest circle fitting on the target surface under said substrate, and if said substrate is positioned otherwise, said distance is chosen such that the plasma density at the location of the said substrate is the same as or greater than in the case of said central positioning" is added at the end of the claim.

VII. With its reply, the respondent filed inter alia the following document:

E1: Opponent's Test Report No. 2, dated 4 February 2009.

A further submission of the appellant, received with a letter dated 7 April 2011, included the following additional documents: Annex 7: Test Report of Prof. Pulker, undated; and Annex 9: H.K. Pulker, "Coatings on Glass", Elsevier, Amsterdam, 1999, pages 256 to 258

VIII. Oral proceedings were held on 24 May 2011. The appellant filed

Annex 12: H.K. Pulker, "Coatings on Glass", second Ed., Elsevier, Amsterdam, 1999, page ix (Preface).

IX. The appellant essentially argued as follows: Late filed ground for opposition under Article 100(b) EPC Said ground for opposition was raised only shortly before the oral proceedings before the opposition division. It should not have been admitted by the opposition division, as it was neither prima facie relevant nor substantiated. The crucial objection that essential process parameters were allegedly not disclosed was raised for the first time during the oral proceedings. The appellant had no opportunity to present counter-evidence. After admission of the fresh ground of opposition, the opposition division should have adjourned the oral proceedings to safeguard the appellant's right to be heard under Article 113 EPC. Objections under Article 100(b) EPC The appellant stressed that the technical field of sputtering of thin films, in particular of optical coatings on glass, was known to depend to a large degree on empirics. Often it was not possible to define precise parameters and to give clear instructions which would lead to immediate success. The appellant referred to Annex 12 (Preface of Prof. Pulker's textbook, in particular to the second paragraph thereof), stating that inexplicable failures of a coating process had often been experienced. The skilled thin-film worker was therefore used to repeated experiments and painstaking optimization of process parameters for achieving the desired goal. The teaching of the opposed patent should be judged having this in mind. The patent indeed contained all the necessary information for successfully carrying out the claimed invention. At the time of the invention, dc sputtering had already by and large replaced the more complicated rf sputtering process. Therefore, it was not necessary to specifically disclose in the patent what was a matter of course for the skilled person and also for the respondent, who had carried out its experiments using pulsed dc sputtering. It was well known in the art of plasma coating that certain coating parameters, such as flow rates, process pressure, sputter rates, sputter power etc. had to be adjusted individually to the specific sputtering apparatus in use. No undue burden was involved with such orientating experiments. The experiments carried out by the respondent deviated from the opposed patent in several important aspects, for instance as regards the target size, the location of the substrate, the preheating, and others. In particular, preheating of the substrate to 80ºC was insufficient in view of the patent's teaching that the temperature difference between the plasma and the substrate, especially at the beginning of the sputtering, should be reduced. The Bayer abrasion test "under tightened conditions" had also been modified. The respondent's experiments were thus not a correct re-working of the invention.

The respondent had apparently been successfully producing coatings according to the patent since 2005 (Annex 1). On the contrary, new experiments of the appellant (Annex 7) clearly demonstrated that the information of the patent allowed one to obtain a satisfactory, peel- and scratch-resistant product, without undue trial and error. The results so obtained were essentially comparable to those of the opposed patent.

X. The respondent essentially argued as follows: Late filed ground for opposition under Article 100(b) EPC The appellant had during the oral proceedings full opportunity to present its counter-arguments. The appellant could also have requested the opposition division to adjourn the oral proceedings or to continue in writing, which it did not. Objections under Article 100(b) EPC The respondent maintained that essential parameters were not disclosed in the patent (see E3 and test report E1). Even when the substrate was preheated to 500ºC, the coatings in accordance the with opposed patent were not obtained. Deviations in the so-called Bayer test under harsher conditions did not concern the coating process itself and were thus not relevant. Coating not passing the standard Bayer abrasion test could not be expected to pass under stricter test conditions. The respondent argued on the contrary that the experimental tests submitted by the appellant had been carried out under conditions which differed from those of the opposed patent. For example, the substrate was apparently not rotatably mounted during sputtering, as clearly called for in the patent. The heating by a 400W halogen, maintained during the coating process, was excessive and without a basis in the patent itself. A change of working gas during the coating was also not disclosed. For these reasons, the appellant's allegedly positive results were obtained only under process conditions which differed from the ones disclosed in the patent and which were unusual in the art. Therefore they could not support reproducibility and sufficiency of disclosure of the claimed invention. Inventive step The respondent maintained that sputtering of hard antireflective layers on sapphire glass substrates was known per se and so was sputtering at close target distances (A5 to A8).

XI. Requests:

The appellant requested that the decision under appeal be set aside and the patent be maintained as granted; or, in the alternative, that the patent be maintained in amended form on the basis of the claims filed with letter of 20 June 2008 as first to third auxiliary requests, or that the case be remitted to the department of first instance for further prosecution.

The respondent requested that the appeal be dismissed.

1. The appeal, although admissible, is not allowable.

2. Amendments (all requests) The amended claims are fairly based on the originally filed application documents. The requirements of Article 123(2) EPC are met. No objection under Article 123(3) EPC arises, as the amendments clearly limit the scope of protection conferred by the claims, having regard to the claims as granted. Further detailed comments in this respect are unnecessary because the patent cannot be maintained for the reasons set out below.

3. Lack of sufficiency of disclosure (Article 100(b) EPC)

3.1 Admissibility of the opposition ground raised under Article 100(b) EPC

According to G 10/91 (OJ EPO 1993, page 420, Headnote I), new grounds of opposition which are not covered by the statement pursuant to Rule 55(c) EPC 1973 may not be considered by the Office of its own motion.

However, because of Article 114(1) EPC, the Opposition Division may, in exceptional cases and at its discretion, also consider other grounds for opposition which prima facie would seem to prejudice the maintenance of the European patent in whole or part (G 10/91, Headnote II).

The board considers that the evidence submitted by the opponent during opposition proceedings in support of its objection (E3 and test report E1) was at least prima facie prejudicial to the maintenance of the patent as granted. The opposition division therefore correctly exercised its discretion to admit this ground of opposition into the proceedings, although it was raised after the expiry of the opposition period. As the ground of opposition was a subject of the first instance proceedings, the board is also empowered to investigate the matter. The opposition ground raised under Article 100(b) EPC is deemed to be admissible (Article 114(1) EPC).

3.2 Substantiation of the objection

3.2.1 The requirement of sufficiency of disclosure According to the established jurisprudence of the boards of appeal, the requirement of sufficiency of disclosure is only met provided the invention as defined in the independent claim can be performed by the person skilled in the art within the whole area claimed without the burden of an undue amount of experimentation, taking into consideration common general knowledge and the whole information content of the patent in suit (see decision T 435/91, OJ EPO 1995, 188, point 2.2.1, third paragraph, of the reasons; and T 409/91, OJ EPO 1994, 653, point 2, first paragraph, penultimate sentence).

3.2.2 The respondent's objection The objection raised by the respondent is that the sputtering method as disclosed in the opposed patent did not lead to the desired scratch-resistant coatings, in particular coatings on sapphire glass which satisfy the scratch-resistance criterion set out in granted claim 1 of the opposed patent. Said claim 1 calls for a coating wherein "the scratching resistance of the obtained layers is similar to or higher than that of the substrate so that the light dispersion of the applied antireflection coating, measured by the "tightened Bayer test" defined in the description, is no more than twice as high as that of the uncoated sapphire glass". The said "tightened Bayer test" is a modification of a standard test method for testing abrasion resistance of coatings using the oscillating sand method, as published in ASTM F 735-94 (2001) (A10).

The respondent argued that according to claim 1 as granted the dST/q (target distance to target size) criterion as defined in paragraph [0021] of the description was the only parameter to be observed for obtaining coatings having the scratch-resistance defined in the claim. Although the said dST/q criterion was apparently met in all cases of the working examples 1 to 3 of the opposed patent, only the coating obtained in accordance with example 1 in fact exhibited the desired level of scratch- and abrasion-resistance.

3.2.3 The gaps in information It was not disputed that in particular the following process and apparatus information is not disclosed in the opposed patent:

(a) the sputtering modus (rf sputtering or dc sputtering)

(b) the sputter voltage, current and power

(c) the nature of the target (dielectric or non-conductive, crystalline or amorphous)

(d) the kind of electrical connections to the electrodes (cathode grounded or not, electrodes isolated or floating)

(e) the flow rates of the gases

(f) the partial pressures of the working gas and the reactive gas or gases

(g) the sputter rates

(h) the mounting of the substrate (grounded or isolated)

(i) the vacuum pumps used (oil-diffusion pump, turbomolecular pump or getter pump).

3.2.4 Lack of guidance (a) The respondent argued that the opposed patent did not provide the skilled person with a sound starting point for determining the correct process parameters by trial and error. Despite all efforts, the respondent had been unable to repeat successfully example 1 of the opposed patent (see test report A9, filed during the opposition proceedings, and E1, filed during the appeal). According to the respondent, it was common practice in the field of sputtering that essential information be disclosed (A6, page 425, right hand column to page 426, left hand column, Table 1). It was even customary to cite the manufacturer and model of the sputter apparatus used (see A5, page 1302, right hand column, last paragraph). (b) Referring to Annexes 1 and 7, the appellant argued that determining and adjusting most of the said process parameters were in fact essential because of the different behaviour of the plasma-enhanced reactive sputtering apparatuses, but were well-known to the person skilled in the art and could be determined by routine experimentation. Choosing a pulsed dc sputtering modus would be obvious as this method was known in the art (for instance from Annex 9) to prevent target poisoning.

(c) The question to be answered by the board is thus whether the gaps in information may be filled by the general common knowledge of the skilled person, without undue burden of trial and error. For that purpose, the respondent and the appellant filed evidence.

3.3 Evaluation of the experimental evidence submitted by the respondent

3.3.1 Test report A9 contains data concerning the pulsed dc sputtering of a four layer system (20 nm silicon nitride / 20 nm silicon dioxide / 90 nm silicon nitride / 129 nm silicon dioxide) on preheated sapphire substrates of 28 mm diameter. Four runs were carried out at distances of 88 mm, 68 mm, 58 mm and 48 mm, respectively, to the target (diameter 150 mm). The process pressure was 0.005 mbar, reactive gases nitrogen and oxygen, respectively, and the working gas was Ar (15 sccm) and the sputtering power was 1500 W. In the subsequently performed Bayer abrasion test according to ASTM F 735-94 (conditions "moderately tightened"), none of the layer systems passed (the sputtered layers were completely removed). In a subsequently filed experimental report E1, similar non-satisfactory results were obtained under essentially the same process conditions as above and under varying gas pressures and substrate/ target distances (48, 58, 68, 88 and 105 mm; target diameter 150 mm) (test runs 4L W_H, 4L W_M and 4L W_S). External preheating of the substrates was carried out at 80ºC for 1 hour. In five samples (4L W_S) the coating was completely removed in the subsequent modified Bayer test. None of the remaining 10 samples of coated sapphire glasses satisfied the scratch-resistance criterion as per claim 1 of the opposed patent.

3.3.2 In the board's judgment, these experiments were carried out in a manner not contestable for the following reasons: - The coating layer system and the substrate (sapphire) are exactly the same as in example 1 of the opposed patent, as regards the chemical nature of the layers and their respective thicknesses;

- The ratios of the substrate distances of 88 mm, 68 mm, 58 mm and 48 mm, respectively, relative to the target of diameter 150 mm, in the four test runs in accordance with A9 and the fifteen runs in accordance with E1 satisfy the conditions required by the patent (paragraph [0021]. Although the target diameter of 150 mm used by the respondent in A9 differs from the 125 mm diameter target used in example 1 of the opposed patent, this difference is in the board's view not decisive because the same ratios dST/q of target distance dST to target diameter q as called for in the opposed patent have been used. The patent itself (paragraph [0021]) states that it is the ratio of the target distance to the target diameter, which is crucial for a correct positioning of the substrate. Therefore, the absolute size of the target cannot be important as long as this ratio is observed and the substrate fits the target (which was the case, as the substrate diameter was 30 mm). The values employed by the respondent in A9 in fact fall within the preferred range of values given in the opposed patent, namely dST/q = less than 1, preferably 1/2, more preferably 1/3. - Planetary motion was used, as prescribed by the opposed patent (Figure 1 and page 6, lines 20 to 31); - The substrate was preheated; - The particular choices of reactive gas and working gas, of sputtering power and gas flow rate, which are not provided in the opposed patent, are conventional in the art and must be considered adequate for the purpose. The patentee itself agreed that pulsed dc sputtering was the method of first choice (although not disclosed in the opposed patent). - The conditions of the modified Bayer abrasion test used in A9 were in fact less severe than the test proposed in the patent itself (reduced stroke length and frequency). The appellant accepted during the oral proceedings that the test employed in A9 was significant in so far as a sample failing under the said somewhat milder test conditions would inevitably also have failed under the harsher test conditions disclosed in the opposed patent. Therefore, the board concludes that the experiments constituted a fair attempt at reworking the opposed patent. The negative test results obtained by the respondent thus show to a high degree of certainty to the board that the gaps in information in the application could not have been filled only by general common knowledge without undue burden of trial and error.

3.4 Evaluation of the counter-evidence filed by the appellant

On the contrary, the experimental counter-evidence of the appellant contained in Annex 7 is not convincing. The main reason is that it deviates in important aspects from the disclosure of the opposed patent. These aspects include the following:

3.4.1 Preheating It is reported that heating of the substrate by means of a 400 W halogen lamp positioned at a distance of 6 to 7 mm sidewards of the substrate was employed. During the oral proceedings, the appellant clarified that the preheating took place in the coating apparatus itself, not externally, and that no heating had been applied during the sputtering process itself. It was estimated that such preheating would raise the substrate temperature to several hundred centigrade. The patent does not give any indication to what temperature the substrate should be preheated. It is also stated that the substrate should be preheated "prior to the sputtering process". There is no disclosure of internal preheating (i.e. heating within the sputtering apparatus). It is also noted that according to paragraph [0018] of the opposed patent, the substrates in the sputtering process of the invention reach temperatures of between 300ºC and 400ºC, and, in the case of isolated substrates, of up to 600ºC. In view of this, internal preheating to high temperatures would appear unnecessary. The board considers that the particular preheating step used in the appellant's experiments is not disclosed in or suggested by the opposed patent, which only briefly and generally mentions preheating as an optional measure. It is also not routine in plasma-enhanced reactive sputtering. The internal preheating by a powerful halogen lamp immediately before the sputtering, which must have led to temperatures of several hundred centigrade, may have had a decisive influence on the adherence and the hardness of the coatings, thus partly explaining the differences between the appellant's and the respondent's experimental results.

3.4.2 Use of pure nitrogen during sputtering of silicon nitride The opposed patent does not teach that the working gas (usually argon) should be replaced by nitrogen when sputtering certain layers. Replacing the standard working gas (Ar) during certain phases of the sputtering process could not be shown to be conventional practice. It must be assumed that the change of the working gas affected the coating properties.

3.4.3 Stationary substrate In the appellant's experimental setup, the substrate was stationary during sputtering, as opposed to what is suggested in the patent itself (planetary motion). The board considers that the opposed patent, in dedicating one full paragraph of the otherwise succinct description and two figures (out of two) to the planetary motion of the substrate, inevitably conveys the impression of the importance of this particular feature. Therefore, the skilled person would have employed such substrate movement when trying to rework the claimed invention. The respondent argued during the oral proceedings that such movement of the substrate could be important for layer homogeneity. The appellant maintained that moving of the substrate was not important, at least not where only a single specimen was coated. In any event, the board considers that the respondent's experiments show that planetary motion of the substrate(s) alone does not guarantee success.

3.4.4 In view of these differences, the appellant's experimental evidence put forward as Annex 7 cannot be considered to represent a fair reproduction of the process as disclosed in the opposed patent. The results obtained thus cannot be taken into account in support of sufficiency of disclosure.

3.4.5 The appellant argued during the oral proceedings that in the field of plasma-enhanced reactive sputtering it was not practicable to give clear-cut and straightforward instructions directly leading to success. Rather, the skilled practitioner would typically arrive at the desired results by a largely empirical process of optimization. Reference was made in this context to the preface of the textbook "Coatings on Glass" by Prof. Pulker, referring to the predominantly empirical and sometimes even erratic nature of the art of thin-film deposition. The amount of process details given in the opposed patent should be judged against this background. The board cannot, however, accept this argument. If the invention was in a technical field without a solid theoretical foundation it would have been all the more necessary to disclose all the available information which could be of use for the skilled person attempting to repeat the claimed invention.

3.5 Conclusion

The evidence filed by the respondent and the appellant lead to the conclusion that essential information is missing in the patent application, such that the skilled person is not in a position to carry out the claimed invention in the light of the teaching of the patent alone. The skilled person is forced to determine by trial and error from a multitude of possibilities the specific set of parameters which guarantees the desired result so as to fill in particular the gaps in information (a) to (e) cited under point 3.2.3. Additional experimental work beyond mere routine and pure common general knowledge would be required in order to fill the gaps in information left in the patent. Carrying out a research programme of this scope would amount to an undue burden of trial and error experimentation in the sense of decision T 435/91 (loc. cit.). The boards concludes that the invention was not disclosed in a manner sufficiently clear and complete for it to be carried out by a person skilled in the art. The requirements of Article 100(b) in conjunction with Article 83 EPC are not met.

This negative finding in respect of the patent as a whole affects by its very nature all the pending requests, none of which is therefore allowable.

Order

ORDER

For these reasons it is decided that:

The appeal is dismissed.

Footer - Service & support
  • Service & support
    • Website updates
    • Availability of online services
    • FAQ
    • Publications
    • Procedural communications
    • Contact us
    • Subscription centre
    • Official holidays
    • Glossary
Footer - More links
  • Jobs & careers
  • Press centre
  • Single Access Portal
  • Procurement
  • Boards of Appeal
Facebook
European Patent Office
EPO Jobs
Instagram
EuropeanPatentOffice
Linkedin
European Patent Office
EPO Jobs
EPO Procurement
X (formerly Twitter)
EPOorg
EPOjobs
Youtube
TheEPO
Footer
  • Legal notice
  • Terms of use
  • Data protection and privacy
  • Accessibility
OSZAR »